26 research outputs found

    neural networks with time-varying inputs

    No full text
    On the global output convergence of a class of recurren

    Call admission policies based on calculated power control setpoints in SIR-based power-controlled DS-CDMA cellular networks

    No full text
    Abstract. In this paper, we develop call admission control algorithms for SIR-based power-controlled DS-CDMA cellular networks. We consider networks that handle both voice and data services. When a new call (or a handoff call) arrives at a base station requesting for admission, our algorithms will calculate the desired power control setpoints for the new call and all existing calls. We will provide necessary and sufficient conditions under which the power control algorithm will have a feasible solution. These conditions are obtained through deriving the inverse of the matrix used in the calculation of power control setpoints. If there is no feasible solution to power control or if the desired power levels to be received at the base station for some calls are larger than the maximum allowable power limits, the admission request will be rejected. Otherwise, the admission request will be granted. When higher priority is desired for handoff calls, we will allow different thresholds (i.e., different maximum allowable power limits) for new calls and handoff calls. We will develop an adaptive algorithm that adjusts these thresholds in real-time as environment changes. The performance of our algorithms will be shown through computer simulation and compared with existing algorithms

    Numerical Study of Magnetoacoustic Signal Generation with Magnetic Induction Based on Inhomogeneous Conductivity Anisotropy

    Get PDF
    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging modality for generating electrical conductivity images of biological tissues with high spatial resolution. In this paper, we create a numerical model, including a permanent magnet, a coil, and a two-layer coaxial cylinder with anisotropic electrical conductivities, for the MAT-MI forward problem. We analyze the MAT-MI sources in two cases, on a thin conductive boundary layer and in a homogeneous medium, and then develop a feasible numerical approach to solve the MAT-MI sound source densities in the anisotropic conductive model based on finite element analysis of electromagnetic field. Using the numerical finite element method, we then investigate the magnetoacoustic effect of anisotropic conductivity under the inhomogeneous static magnetic field and inhomogeneous magnetic field, quantitatively compute the boundary source densities in the conductive model, and calculate the sound pressure. The anisotropic conductivity contributes to the distribution of the eddy current density, Lorentz force density, and acoustic signal. The proposed models and approaches provide a more realistic simulation environment for MAT-MI

    Simultaneous Blind Separation of Instantaneous Mixtures With Arbitrary Rank

    No full text
    Abstract—This paper presents a gradient-based method for simultaneous blind separation of arbitrarily linearly mixed source signals. We consider the regular case (i.e., the mixing matrix has full column rank) as well as the ill-conditioned case (i.e., the mixing matrix does not have full column rank). We provide one necessary and sufficient condition for the identifiability of simultaneous blind separation. According to our identifiability condition and the existing general identifiability condition, all source signals are separated into two categories: separable single sources and inseparable mixtures of several single sources. A sufficient condition is also derived for the existence of optimal partition of the mixing matrix which leads to a unique maximum set of separations. One sufficient condition is proved to show that each maximum partition of the mixing matrix corresponds to a unique class of separated signals and as a result we can determine the number of maximum partitions from the classes of outputs under different separation matrices. For sub-Gaussian or super-Gaussian source signals, a cost function based on fourth-order cumulants is introduced to simultaneously separate all separable single sources and all inseparable mixtures. By minimizing the cost function, a gradient-based method is developed. Finally, simulation results show the effectiveness of the present method. Index Terms—Blind source separation, cumulants, gradientbased method, ill-conditioned case, independence, maximum partition. I

    Electronic evaluation for video commercials by impression index

    No full text
    How to evaluate the effect of commercials is significantly important in neuromarketing. In this paper, we proposed an electronic way to evaluate the influence of video commercials on consumers by impression index. The impression index combines both the memorization and attention index during consumers observing video commercials by tracking the EEG activity. It extracts features from scalp EEG to evaluate the effectiveness of video commercials in terms of time-frequency-space domain. And, the general global field power was used as an impression index for evaluation of video commercial scenes as time series. Results of experiment demonstrate that the proposed approach is able to track variations of the cerebral activity related to cognitive task such as observing video commercials, and help to judge whether the scene in video commercials is impressive or not by EEG signals. © 2013 Springer Science+Business Media Dordrecht

    On the Recording Reference Contribution to EEG Correlation, Phase Synchorony, and Coherence

    No full text

    Investigating Driver Fatigue versus Alertness Using the Granger Causality Network

    Get PDF
    Driving fatigue has been identified as one of the main factors affecting drivers’ safety. The aim of this study was to analyze drivers’ different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers’ fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain’s ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers’ fatigue levels, and as reference work for future studies

    ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition

    No full text
    Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels’ weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the realization of a practical EEG-based emotion recognition system
    corecore